A geometric framework for nonconvex optimization duality using augmented lagrangian functions
نویسندگان
چکیده
We provide a unifying geometric framework for the analysis of general classes of duality schemes and penalty methods for nonconvex constrained optimization problems. We present a separation result for nonconvex sets via general concave surfaces. We use this separation result to provide necessary and sufficient conditions for establishing strong duality between geometric primal and dual problems. Using the primal function of a constrained optimization problem, we apply our results both in the analysis of duality schemes constructed using augmented Lagrangian functions, and in establishing necessary and sufficient conditions for the convergence of penalty methods.
منابع مشابه
Duality in Nonlinear Programs Using Augmented Lagrangian Functions*
A generally nonconvex optimization problem with equality constraints is studied. The problem is introduced as an “inf sup” of a generalized augmented Lagrangian function. A dual problem is defined as the “sup inf’ of the same generalized augmented Lagrangian. Sufftcient conditions are derived for constructing the augmented Lagrangian function such that the extremal values of the primal and dual...
متن کاملA Unified Analysis of Nonconvex Optimization Duality and Penalty Methods with General Augmenting Functions
In this paper, we study a unifying framework for the analysis of duality schemes and penalty methods constructed using augmenting functions that need not be nonnegative or bounded from below. We consider two geometric optimization problems that are dual to each other and characterize primal-dual problems for which the optimal values of the two problems are equal. To establish this, we show that...
متن کاملSolutions and optimality criteria for nonconvex constrained global optimization problems with connections between canonical and Lagrangian duality
Abstract This paper presents a canonical duality theory for solving a general nonconvex 1 quadratic minimization problem with nonconvex constraints. By using the canonical dual 2 transformation developed by the first author, the nonconvex primal problem can be con3 verted into a canonical dual problem with zero duality gap. A general analytical solution 4 form is obtained. Both global and local...
متن کاملAugmented Lagrangian Duality and Nondifferentiable Optimization Methods in Nonconvex Programming
Abstract. In this paper we present augmented Lagrangians for nonconvex minimization problems with equality constraints. We construct a dual problem with respect to the presented here Lagrangian, give the saddle point optimality conditions and obtain strong duality results. We use these results and modify the subgradient and cutting plane methods for solving the dual problem constructed. Algorit...
متن کاملExtended duality for nonlinear programming
Duality is an important notion for nonlinear programming (NLP). It provides a theoretical foundation for many optimization algorithms. Duality can be used to directly solve NLPs as well as to derive lower bounds of the solution quality which have wide use in other high-level search techniques such as branch and bound. However, the conventional duality theory has the fundamental limit that it le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Global Optimization
دوره 40 شماره
صفحات -
تاریخ انتشار 2008